Human embryonic stem cells
نویسندگان
چکیده
Despite intense investigation on apoptosis pathways, exactly how apoptosis is regulated in various primary cells remains understudied and continues to reveal unexpected mechanisms. While a strict regulation of apoptosis is critical for the long-term survival of postmitotic cells, mitotic cells need to maintain their ability to activate apoptosis rapidly, as they can be at continual risk of becoming cancerous. Therefore, cells must efficiently balance the need for having a primed apoptotic pathway vs. the risks associated with inadvertent cell death. This balance is particularly important during embryogenesis, where human embryonic stem (hES) cells proliferate rapidly and differentiate, leading to the development of an entire organism. While optimal hES cell survival is necessary for development, the ability of these cells to respond rapidly to DNA damage by apoptosis and maintain genomic integrity is also critical to prevent propagation of mutations in the developing embryo. Indeed, hES cells are known to be highly sensitive to DNA damage, and our recent results have uncovered a novel mechanism by which these cells are primed for rapid apoptosis. An essential mediator of apoptosis in mammalian cells is Bax, a proapoptotic member of the Bcl-2 family. In healthy cells, Bax is predominantly cytosolic and present in an inactive conformation. Apoptotic stimuli, such as DNA damage, result in the induction of BH3-only family proteins that promote Bax activation by conformational changes. Activated Bax then translocates to the mitochondria, where it inserts into the mitochondrial outer membrane, promoting the release of cytochrome c and resulting in caspase activation. Thus, Bax activation is a Human embryonic stem cells Living on the edge
منابع مشابه
Extract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells
Objective(s): In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Materials and Methods: Human A...
متن کاملDifferentiation of human embryonic stem cells into neurons
Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...
متن کاملLarge-Scale Expansion of Human Embryonic and Induced Pluripotent Stem Cells for Cell Therapy Applications
Successful isolation, derivation and culturing of human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem (hiPSCs) cells in laboratory scale has opened new horizones for cell therapy applications such as tissue engineering and regenerative medicine. However, most of the cell therapy protocols using these unique cells require large number of ...
متن کاملDifferentiation of human embryonic stem cells into neurons
Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...
متن کاملEstablishment, Culture and Freezing of Human and Mouse Embryonic Stem Cells: a Protocol Guide
Studies of the biology of human embryonic stem cells (hES cells) have developed rapidly over the past nine years since the first reports of their derivation. They clearly offer enormous potential, not only for regenerative medicine, but also for drug discovery and toxicology, human developmental biology and cancer research. Realizing these potentials a better understanding of the fundamental as...
متن کاملReprogramming by cytosolic extract of human embryonic stem cells improves dopaminergic differentiation potential of human adipose tissue-derived stem cells
The extract of pluripotent stem cells induces dedifferentiation of somatic cells with restricted plasticity. In this study, we used the extract of human embryonic stem cells (hESC) to dedifferentiate adipose tissue-derived stem cells (ADSCs) and examined the impact of this reprogramming event on dopaminergic differentiation of the cells. For this purpose, cytoplasmic extract of ESCs was prepare...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2012